
CSE 451: Operating Systems

Winter 2013

Processes

Gary Kimura

Process management

• This module begins a series of topics on processes,

threads, and synchronization

– this is the most important part of the class, well, except for

file systems and disks…

• Processes and process management

– what are the OS units of ownership / execution?

– how are they represented inside the OS?

– how is the CPU scheduled across processes?

– what are the possible execution states of a process?

• and how does the system move between them?

– How are they created?

– How can this be made faster

2

A Digression – Mechanism and Policy

• Mechanism – how to do something (schedule a

thread, fix a lightbulb)

• Policy – when to do something, who is authorized to

do it (network packet arrived for thread, light is

burned out by anyone but me)

• Mechanisms should NOT dictate policy.

– Allows multiple policies for same mechanism (fix lights in

batches)

– Allows multiple mechanisms for same policy (fix lights by

myself [unreliable,cheap], call electrician

[reliable,expensive])

3

4

The Process

• The process is the OS’s abstraction for execution

– the unit of ownership (root of web/tree of kernel data

structures)

– the unit of execution (sorta)

– the unit of scheduling (kinda)

– the dynamic (active) execution context

• compared with program: static, just a bunch of bytes

• Process is often called a job, task, or sequential

process

• The goal of the OS is to present each Process with

the view that it is executing in it’s own separate,

isolated computer

What is a “process”?

• Simple, classic case (1950’s): a sequential process

– An address space (abstraction of “memory”)

– A single bit of execution: a “thread”

• A sequential process is:

– The unit of execution

– The unit of scheduling

– The execution context (registers, OS state,

– memory, etc.)

5

address space

thread

What is a process?

• Process == fundamental abstraction for program

execution

– an address space which contains:

• the code for the running program

• the data for the running program

– at least one thread with state

• Registers, IP

• Floating point state

• Stack and stack pointer

– a set of OS resources

• open files, network connections, security caches, sound

channels, …

• In other words, it’s all the stuff you need to run the

program

6

7

A process’s address space

(overly simplified)

0x00000000

0x7FFFFFFF

32-bit address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

stack

(dynamic allocated mem)

IP

SP

8

The OS’s process namespace

• (Like most things, the particulars depend on the

specific OS, but the principles are general)

• The name for a process is called a process ID (PID)

– An integer (how many bits?), possibly a string(!)

• The PID namespace is global to the system

– Only one process at a time has a particular PID: uniqueness

• Operations that create processes return a PID

– E.g., NtCreateProcess, ShellExecute

• Operations on processes take PIDs as an argument

– E.g., NtOpenProcess

9

• There’s a data structure called the process object

(_KPROCESS in base\ntos\inc\ke.h) that holds all this stuff

– Processes are identified from user space by a process ID, returned by

NtCreateProcess.

• OS keeps all of a process’s hardware execution state in the

_KTHREAD (same file) when the process isn’t running

– IP, SP, registers, etc.

– when a process is unscheduled (i.e., processor is taken away from the

process) , the state is transferred out of the hardware into the

_KTHREAD

• Note: It is natural to think that there must be some esoteric

techniques being used

– fancy data structures that you’d never think of yourself

 Wrong! It’s pretty much just what you’d think of!

 Except for some clever assembly code in one place…

The Process Object

10

_KTHREADs and hardware state

• When a process is running, its hardware state is inside the CPU

– IP, SP, registers

– CPU contains current values

• When a process is transitioned to the waiting state, the OS saves its

CPU state in the _KTHREAD (actually, _PRCB, but that’s not

important )

– when the OS returns the process to the running state, it loads the

hardware registers with values from that process’s _KTHREAD

• The act of switching the CPU from one process to another is called

a context switch

– systems may do 100s or 1000s of switches/sec.

– takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling, more when

we talk about threads

11

Process creation

• New processes are created by existing processes

– creator is called the parent

– created process is called the child

– what creates the first process, and when?

• In some systems, parent defines or donates

resources and privileges for its children

– LINUX/UNIX: child inherits parent’s security context,

environment, open file list, etc.

– NT: all the above are optional (remember, mechanism vs

policy), the Windows subsystem provides policy.

• When child is created, parent may either wait for it to

finish, or may continue in parallel, or both!

12

Process Creation 2

• In LINUX, fork/exec pairs.
– fork() clones the current process, duplicates all memory,

“inherit” open files

– exec() throws away all memory and loads new program into
memory. Keeps all open files!

– Very useful, but… wasteful. >99% of all fork() calls followed
by exec(). Copy-on-write memory helps but still a big
overhead (have to “duplicate” all data structures)

• Windows has parent process doing the work
– Create process

– Fill in memory

– Pass handles

– Create thread with stack and IP

– Many system calls (compared with LINUX) but all policy is in
user code. More flexible.

13

Process Destruction

• Privileged operation!

– Process can always kill itself

– Killing another process requires permission

• Terminates all threads

• Releases owned resources to known state

– Files

– Events

– Memory

• Notification sent to interested parties

• KPROCESS is freed

14

15

So you want to run a process..

• How was it created?

– Someone wrote some C/C#/C++/etc

– Compile/fix-errors/compile again

– Get object files

• What’s in the .o or .obj files?

– Code and data and fixups

– Code and data are easy

– Fixups describe relationships

• Targets of jumps/calls

• Data references

– What do you do about references to other (extern)

code/data?

• Fixups too!

16

More of what’s in .o / .obj files

• Old style format (reflecting stream view of files)

– Stream of records <tag><data> where <tag> was

• DATA: <data> was constant data

• BSS: <data> was just the size of the BSS reserved

• CODE: just like DATA

• FIXUP: applies to previous CODE/DATA record, may list a

name (external) or an offset into some other prior record and

describe a width (8, 16, 32, 64) and an operation (ADD, IMM,

SELF-REL)

• Modern format (take advantage of memory mapping)

– Header on file describes sections suitable for mmap()

17

What’s a section?

• Section is a piece of contiguous memory

– Named

– Protected: read only, read/write, execute, read/execute, etc.

– Location in file

– Location in memory

• Some names are important

– DATA

– CODE

– BSS

– DEBUG

– FIXUP

18

Putting .o/.obj files together

• The “linker”

– take a collection of object files and produce an executable

image

– Gathers and appends like named/protected sections

– Evaluates fixups and establishes addressing (linkages)

between sections

– Emits special sections

• DEBUG

• IMPORT

• EXPORT

– All into a file with the same general format as .o/.obj files

• A few new sections

• But it’s header says it’s executable

• Called the image file

19

Executing the image file

• What does exec() or CreateProcess() do?

– Easy stuff:

• Allocate KPROCESS

• Create address space

– Harder stuff

• Create first thread

• Copy handle environment from parent

– The meat:

• Opens image file

• Memory maps header (section table of contents)

• For each section:

– Memory map the appropriate portion of the file

– Into the correct address space location

– With correct memory protection

20

Is that all?

• Once upon a time, yes

– All code was in one file

– Included all special stuff for calling the OS

• Not nearly useful enough

– What if system call #’s changed?

– What about sharing common code between apps?

– What about 3rd party code?

– What about extensibility?

21

Dynamic (aka Shared) Libraries

• Goal: break down single images into multiple pieces

– Independently distributable

– Breakdown based on functionality / extensibility

• Implications on image format

– Need a way to reference between image files

– Add IMPORT and EXPORT sections

– IMPORT lists all functions required by the image file

(executable or library)

– EXPORT lists all functions offered by the image file

• Big implications on process creation

22

Process Creation with libraries

• Easy/Harder stuff still the same

• Hardest stuff:

– No longer loading just a single file, loading multiple modules

– Walking each IMPORT table, finding references to modules

not yet loaded and loading them

– Big graph traversal (remember “transitive closure”?)

– How are linkages established between modules?

23

Module Linkage

• Naïve approach is to use something similar to fixups

– Modify the sections to establish linkage

– Modifies the memory mapped pages

• Don’t want to modify the original file

• Copy-on-write

• Bigger page file

• More dirty pages in memory

• Work with compiler

– Observe that inter-module references are always direct

(never self-relative). Call or pointer reference

– Keywords in language (or header files) that change direct

calls into indirect calls and direct addressing into indirect

addressing.

24

Efficient Linkage

• Foo(args) turns into (*import_Foo)(args)

• Gather all import_X addresses into a single section

– Called IAT (import address table)

– Usually only a single page in size, not inefficient to dirty

– Still have to do some big work

• Can we do better?

25

Binding

• Floating modules

– No known address

– IAT required to handle differing locations based on other

modules’ locations

• Bind modules to specific locations

– Section table describes location, mapping is trivial

– IAT can be pre-built with locations already in mind

– Zero program-startup fixups

• What’s the issue?

26

Binding

• What address do you assign?

– 32 bit address space seems large enough

– XP has >1200 modules.

• What if there’s a collision?

– New release of module grows in size (bug fixes,

functionality)

– Modules produced by two independent companies

– Loader needs to be robust in the face of this

– Choose another location

– Fix up IAT (small number of pages)

27

A few cheats

• Compiler needs to generate self-relative instructions

– Otherwise relocation of module would require fixups

– Works well on x86…

– Most of XP’s DLL’s can be broken into disjoint groups and

addresses assigned to each

28

Vista cool feature

• “dynamic rebasing”

– At install time, all modules are rebased to random addresses

– Just edit the IATs, still have speedy program start

– What problem would this solve?

• Buffer overflow attacks

– Operate by overflowing a stack buffer and overwriting a

return address

– Knowing where special code might be would allow attacker

to hijack return to code in a module not directly referenced

– Not if the module moves…

29

Windows CreateProcess

• Different from fork/exec.

– Fork/exec are in kernel mode and embody the entire process

creation experience

– Windows Kernel has

• NtCreateProcess – creates a new process address space. BUT

NO THREAD

• NtCreateThread – creates a new thread in a given process

• NtSetThreadInformation – sets execution context for thread

(notably stack and PC)

30

Windows CreateProcess

• CreateProcess is user code in kernel32 module

– Creates process (NtCreateProcess)

– Maps in kernel call DLL (ntdll)

– Maps in image (but no libraries)

– Creates initial thread

– Sets thread to initialization routine in ntdll

(LdrpInitializeProcess)

– Go!

• LdrpInitializeProcess does all the memory mapping

work

– Executing in the new image’s context

– Walking module lists is just memory access

– Makes NtCreateSection calls

31

Why not do what Unix did?

• Extensibility

– Differing loader policies (OS/2, DOS)

– New loader implementations

– Smaller kernel

• Simpler kernel loader code

