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Process management 

• This module begins a series of topics on processes, 

threads, and synchronization 

– this is the most important part of the class, well, except for 

file systems and disks… 

• Processes and process management 

– what are the OS units of ownership / execution? 

– how are they represented inside the OS? 

– how is the CPU scheduled across processes? 

– what are the possible execution states of a process? 

• and how does the system move between them? 

– How are they created?  

– How can this be made faster 
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A Digression – Mechanism and Policy 

• Mechanism – how to do something (schedule a 

thread, fix a lightbulb) 

• Policy – when to do something, who is authorized to 

do it (network packet arrived for thread, light is 

burned out by anyone but me) 

• Mechanisms should NOT dictate policy.   

– Allows multiple policies for same mechanism (fix lights in 

batches) 

– Allows multiple mechanisms for same policy (fix lights by 

myself [unreliable,cheap], call electrician 

[reliable,expensive]) 
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The Process 

• The process is the OS’s abstraction for execution 

– the unit of ownership (root of web/tree of kernel data 

structures) 

– the unit of execution (sorta) 

– the unit of scheduling (kinda) 

– the dynamic (active) execution context 

• compared with program: static, just a bunch of bytes 

• Process is often called a job, task, or sequential 

process 

• The goal of the OS is to present each Process with 

the view that it is executing in it’s own separate, 

isolated computer 
 



What is a “process”? 

• Simple, classic case (1950’s): a sequential process 

– An address space (abstraction of “memory”) 

– A single bit of execution: a “thread” 

• A sequential process is: 

– The unit of execution 

– The unit of scheduling 

– The execution context (registers, OS state,  

– memory, etc.) 
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address space

thread



What is a process? 

• Process == fundamental abstraction for program 

execution 

– an address space which contains: 

• the code for the running program 

• the data for the running program 

– at least one thread with state 

• Registers, IP 

• Floating point state 

• Stack and stack pointer 

– a set of OS resources 

• open files, network connections, security caches, sound 

channels, … 

• In other words, it’s all the stuff you need to run the 

program 
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A process’s address space 

(overly simplified) 

0x00000000 

0x7FFFFFFF 

32-bit address space 

code 

(text segment) 

static data 

(data segment) 

heap 

(dynamic allocated mem) 

stack 

(dynamic allocated mem) 

IP 

SP 
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The OS’s process namespace 

• (Like most things, the particulars depend on the 

specific OS, but the principles are general) 

• The name for a process is called a process ID (PID) 

– An integer (how many bits?), possibly a string(!) 

• The PID namespace is global to the system 

– Only one process at a time has a particular PID: uniqueness 

• Operations that create processes return a PID 

– E.g., NtCreateProcess, ShellExecute 

• Operations on processes take PIDs as an argument 

– E.g., NtOpenProcess 
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• There’s a data structure called the process object 

(_KPROCESS in base\ntos\inc\ke.h) that holds all this stuff 

– Processes are identified from user space by a process ID, returned by 

NtCreateProcess. 

• OS keeps all of a process’s hardware execution state in the 

_KTHREAD (same file) when the process isn’t running 

– IP, SP, registers, etc. 

– when a process is unscheduled (i.e., processor is taken away from the 

process) , the state is transferred out of the hardware into the 

_KTHREAD 

• Note:  It is natural to think that there must be some esoteric 

techniques being used 

– fancy data structures that you’d never think of yourself 

 Wrong!  It’s pretty much just what you’d think of!  

  Except for some clever assembly code in one place… 

The Process Object 
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_KTHREADs and hardware state 

• When a process is running, its hardware state is inside the CPU 

– IP, SP, registers 

– CPU contains current values 

• When a process is transitioned to the waiting state, the OS saves its 

CPU state in the _KTHREAD (actually, _PRCB, but that’s not 

important ) 

– when the OS returns the process to the running state, it loads the 

hardware registers with values from that process’s _KTHREAD 

• The act of switching the CPU from one process to another is called 

a context switch 

– systems may do 100s or 1000s of switches/sec. 

– takes a few microseconds on today’s hardware 

• Choosing which process to run next is called scheduling, more when 

we talk about threads 
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Process creation 

• New processes are created by existing processes 

– creator is called the parent 

– created process is called the child 

– what creates the first process, and when? 

• In some systems, parent defines or donates 

resources and privileges for its children 

– LINUX/UNIX: child inherits parent’s security context, 

environment, open file list, etc. 

– NT: all the above are optional (remember, mechanism vs 

policy), the Windows subsystem provides policy. 

• When child is created, parent may either wait for it to 

finish, or may continue in parallel, or both! 
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Process Creation 2 

• In LINUX, fork/exec pairs.   
– fork() clones the current process, duplicates all memory, 

“inherit” open files 

– exec() throws away all memory and loads new program into 
memory. Keeps all open files! 

– Very useful, but… wasteful. >99% of all fork() calls followed 
by exec().  Copy-on-write memory helps but still a big 
overhead (have to “duplicate” all data structures) 

• Windows has parent process doing the work 
– Create process 

– Fill in memory 

– Pass handles 

– Create thread with stack and IP 

– Many system calls (compared with LINUX) but all policy is in 
user code. More flexible. 
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Process Destruction 

• Privileged operation! 

– Process can always kill itself 

– Killing another process requires permission 

• Terminates all threads 

• Releases owned resources to known state 

– Files 

– Events 

– Memory 

• Notification sent to interested parties 

• KPROCESS is freed 
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So you want to run a process.. 

• How was it created? 

– Someone wrote some C/C#/C++/etc 

– Compile/fix-errors/compile again 

– Get object files 

• What’s in the .o or .obj files? 

– Code and data and fixups 

– Code and data are easy 

– Fixups describe relationships 

• Targets of jumps/calls 

• Data references 

– What do you do about references to other (extern) 

code/data? 

• Fixups too! 
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More of what’s in .o / .obj files 

• Old style format (reflecting stream view of files) 

– Stream of records <tag><data> where <tag> was 

• DATA: <data> was constant data 

• BSS: <data> was just the size of the BSS reserved 

• CODE: just like DATA 

• FIXUP: applies to previous CODE/DATA record, may list a 

name (external) or an offset into some other prior record and 

describe a width (8, 16, 32, 64) and an operation (ADD, IMM, 

SELF-REL) 

• Modern format (take advantage of memory mapping) 

– Header on file describes sections suitable for mmap() 
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What’s a section? 

• Section is a piece of contiguous memory 

– Named 

– Protected: read only, read/write, execute, read/execute, etc. 

– Location in file 

– Location in memory 

• Some names are important 

– DATA 

– CODE 

– BSS 

– DEBUG 

– FIXUP 
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Putting .o/.obj files together 

• The “linker” 

– take a collection of object files and produce an executable 

image 

– Gathers and appends like named/protected sections 

– Evaluates fixups and establishes addressing (linkages) 

between sections 

– Emits special sections 

• DEBUG 

• IMPORT 

• EXPORT 

– All into a file with the same general format as .o/.obj files 

• A few new sections 

• But it’s header says it’s executable 

• Called the image file 
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Executing the image file 

• What does exec() or CreateProcess() do? 

– Easy stuff: 

• Allocate KPROCESS 

• Create address space 

– Harder stuff 

• Create first thread 

• Copy handle environment from parent 

– The meat: 

• Opens image file 

• Memory maps header (section table of contents) 

• For each section: 

– Memory map the appropriate portion of the file 

– Into the correct address space location 

– With correct memory protection 
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Is that all? 

• Once upon a time, yes 

– All code was in one file 

– Included all special stuff for calling the OS 

• Not nearly useful enough 

– What if system call #’s changed? 

– What about sharing common code between apps? 

– What about 3rd party code? 

– What about extensibility? 
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Dynamic (aka Shared) Libraries 

• Goal: break down single images into multiple pieces 

– Independently distributable 

– Breakdown based on functionality / extensibility 

• Implications on image format 

– Need a way to reference between image files 

– Add IMPORT and EXPORT sections 

– IMPORT lists all functions required by the image file 

(executable or library) 

– EXPORT lists all functions offered by the image file 

• Big implications on process creation 
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Process Creation with libraries 

• Easy/Harder stuff still the same 

• Hardest stuff: 

– No longer loading just a single file, loading multiple modules 

– Walking each IMPORT table, finding references to modules 

not yet loaded and loading them 

– Big graph traversal (remember “transitive closure”?) 

– How are linkages established between modules? 
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Module Linkage 

• Naïve approach is to use something similar to fixups 

– Modify the sections to establish linkage 

– Modifies the memory mapped pages 

• Don’t want to modify the original file 

• Copy-on-write 

• Bigger page file 

• More dirty pages in memory 

• Work with compiler 

– Observe that inter-module references are always direct 

(never self-relative).  Call or pointer reference 

– Keywords in language (or header files) that change direct 

calls into indirect calls and direct addressing into indirect 

addressing. 
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Efficient Linkage 

• Foo( args ) turns into (*import_Foo)( args ) 

• Gather all import_X addresses into a single section 

– Called IAT (import address table) 

– Usually only a single page in size, not inefficient to dirty 

– Still have to do some big work 

• Can we do better? 
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Binding 

• Floating modules 

– No known address 

– IAT required to handle differing locations based on other 

modules’ locations 

• Bind modules to specific locations 

– Section table describes location, mapping is trivial 

– IAT can be pre-built with locations already in mind 

– Zero program-startup fixups 

• What’s the issue? 
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Binding 

• What address do you assign? 

– 32 bit address space seems large enough 

– XP has >1200 modules. 

• What if there’s a collision?  

– New release of module grows in size (bug fixes, 

functionality) 

– Modules produced by two independent companies 

– Loader needs to be robust in the face of this 

– Choose another location 

– Fix up IAT (small number of pages) 
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A few cheats 

• Compiler needs to generate self-relative instructions 

– Otherwise relocation of module would require fixups 

– Works well on x86… 

– Most of XP’s DLL’s can be broken into disjoint groups and 

addresses assigned to each 
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Vista cool feature 

• “dynamic rebasing” 

– At install time, all modules are rebased to random addresses 

– Just edit the IATs, still have speedy program start 

– What problem would this solve? 

• Buffer overflow attacks 

– Operate by overflowing a stack buffer and overwriting a 

return address 

– Knowing where special code might be would allow attacker 

to hijack return to code in a module not directly referenced 

– Not if the module moves…  
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Windows CreateProcess 

• Different from fork/exec.  

– Fork/exec are in kernel mode and embody the entire process 

creation experience 

– Windows Kernel has 

• NtCreateProcess – creates a new process address space. BUT 

NO THREAD 

• NtCreateThread – creates a new thread in a given process 

• NtSetThreadInformation – sets execution context for thread 

(notably stack and PC) 
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Windows CreateProcess 

• CreateProcess is user code in kernel32 module 

– Creates process (NtCreateProcess) 

– Maps in kernel call DLL (ntdll) 

– Maps in image (but no libraries) 

– Creates initial thread 

– Sets thread to initialization routine in ntdll 

(LdrpInitializeProcess) 

– Go! 

• LdrpInitializeProcess does all the memory mapping 

work 

– Executing in the new image’s context 

– Walking module lists is just memory access 

– Makes NtCreateSection calls 
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Why not do what Unix did? 

• Extensibility 

– Differing loader policies (OS/2, DOS) 

– New loader implementations  

– Smaller kernel 

• Simpler kernel loader code 

 


